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A study is made of the asymptotic equations governing gravity waves on water 
which cause a transition from one surface level to a slightly higher one and ap- 
proach a steady wave-form as time increases, a t  least at the head of the wave. A 
two-parameter family of limit processes is surveyed in each of which the time 
scale and the horizontal length scale tend to infinity in a definite relation to the 
amplitude, as that tends to zero. Small-amplitude linearization is shown to be 
possible at  most during a transitory stage of the wave development. Arbitrarily 
close approach to steadiness at the head of the wave is found to imply that a 
substantial part of the transition wave must be ultimately governed by a near- 
steady variant of the non-linear equation of Korteweg & de Vries (1895) and must 
take the form of a train of cnoidal waves characterized by a parameter which 
changes slightly from crest to crest. 

1. Introduction 
In  the theory of surface waves on water, certain basic wave forms play a funda- 

mental role. One is the sinusoidal wave of small amplitude, another is the solitary 
wave. A third is the wave of transition from one water level to another, which is 
called a ‘bore ’ or ‘jump ’, if it  raises the water level. It is known to show some 
analogy to gasdynamical shocks, but while their mechanism has been well ex- 
plored, little is known about the internal structure of bores. The differences be- 
tween them must be considerable, since experiment (Favre 1935; Ippen & Harle- 
man 1956) shows the water surface to rise smoothly to a crest and then to settle 
down to the final level in a sequence of undulations, if the relative rise in level is 
sufficiently small. 

An earlier theoretical study (Benjamin & Lighthill 1954) assumed that the 
waves are steady in the frame of a suitable Galilean observer, who sees a uniform 
cnoidal wave train determined by a small amount of energy dissipation at the 
very head of the wave, while dissipation elsewhere is disregarded. Such a theory, 
however, is unconvincing for lack of any physically founded mechanism from 
which the energy dissipation just at  the front of the wave could be calculated. To 
put the following on a clear physical basis in this respect, only waves which propa- 
gate into fluid at rest will be considered. Since the water motion starts very gently 
at  the front of such a wave, a boundary layer can be formed only quite gradually 
with increasing distance from the front, and viscous dissipation must be negligible 
near the front of the wave. It may become significant further away from the 
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wave front,? but will be neglected below, since that is in any case proper for the 
first step in an analysis of the motion. 

In  fact, Benjamin (1962) subsequently modified the central notion of the earlier 
study in favour of conservation of energy, though not of total momentum. This 
leads to ideas rather similar to those based on radiation proposed by Lemoine 
(1948). But neither study presents more than the germ of a possible theory, 
which is not checked against the equations of motion. (Despite quite different 
premises, however, the present analysis will be seen to reproduce some of the 
ideas and analytical features of all the earlier work in modified form or inter- 
pretation. A similar, indirect influence of an unpublished report by Gardner & 
Morikawa (1960) should also be acknowledged.) Part of the real debt which I 
owe to Lemoine (1948) and Benjamin (1962) is the seed of doubt about the 
steadiness of transition waves. The present investigation therefore sets out to 
study the asymptotic behaviour of transition waves, as the time tends to infinity, 
and to  ask whether any waves can, consistently witjh the full equations of motion, 
approach steadiness at least a t  the head of the wave T Here steadiness is of course 
understood to refer to the frame of a suitable Galilean observer, and the ‘head’ 
of the wave means, say, the part between the front and the first trough. 

An analogy between bores and the more complicated transition waves in 
collisionless plasma has been uncovered by Gardner & Morikawa (1960), and 
Morton (1962) has made a thorough survey of the possible shock-discontinuities 
for that problem. The value of the survey was greatly enhanced by numerical 
computations of initial-value problems of the Korteweg-de Vries (1 895) equation 
(which does not, however, apply initially to his plasma problem or its hydraulic 
analogue); it showed the solutions to approach asymptotically the predicted 
shocks-except for the smallest amplitudes, where numerical convergence was 
not achieved. In  view of this additional indication that the key problem for an 
understanding of bore structure is posed by the weak bores, only transition waves 
of small amplitude are considered in the following. 

The basic double limit, t+m, s+O (in this order!), where E is the small- 
amplitude parameter, may be made more homogeneous by writing t = T / r  
where r is an artificial parameter, and letting r+ 0 for fixed T. The present in- 
vestigation considers only simpler, single limits for which T+ 0 in some definite 
relation to e, but approximates (Meyer 1966) the desired double limit by survey- 
ing a sufficiently large class of such relations T ( E ) .  Indeed, the function class r 
admitted is that of all functions tending to zero continuously with E and such 
that, for any pair O(e), K ( E )  of members of the class, at least one of limB/K and 
lim K / B  exists. Different functions (r(s))-l then represent large times of different 
order of magnitude relative to e-l. Since initial conditions will not be considered, 
the meaning of the ‘time scale ’ 7-l will actually relate, not to time intervals, but 
rather to the largest rates of change occurring in the motion (for the precise 
definition, see $ 2 ) ;  and ‘larger time’ is to be interpreted as decreasing unsteadi- 
ness. 

t But Sturtevant (1965) has pointed out that the dominant effect of viscosity should 
cause an increase(!) in energy, mass flow and total momentum flow for the undulations 
following upon the &st crest. 
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A complication arises from the fact that the head of the wave may be antici- 
pated to be formed by the harmonic components of smallest wave-number. 
Much in contrast to the case of a gasdynamical shock, the discontinuity analysis 
(Rayleigh 1914) of weak bores cannot be linked to the idea that the transition 
takes place over a short distance. Rather, it amounts to a comparison of the 
initial and final equilibrium states based on the conjecture that the process is 
altogether steady, or a t  any rate, that mass and total momentum do not accumu- 
late in the transition zone at  a rate different from that corresponding precisely 
to the increase in width of this zone. In  any case, long waves must be anticipated 
to form the head of the transition, and hence the relevant horizontal length scale 
there must be large compared with the vertical length scale. Their ratio may be 
characterized by a third parameter, S-l, which should be determined by the 
equations of motion and other data of the problem, and which cannot therefore 
represent a third, independent limit process. Thus if 7 = 7(e) ,  then also S = S(e). 
Since the functions of the class I’ can be naturally grouped in equivalence classes, 
which can be ordered (Kaplun & Lagerstrom 1957)) the task before us amounts 
to a survey of a two-parameter family of single limit processes. Since the basic 
question concerns asymptotic wave-forms for large times, this task can be re- 
duced somewhat by assuming 7(e) to have the form 7 = ~ ( E ) Y ( E ) ,  where Y E  I? is 
also a small parameter. Physically, this limits the survey to wave-forms for which 
the unsteadiness at  the head of the wave has decreased below the level naturally 
associated with the small horizontal variations; and that would appear to be the 
proper interpretation of near-steadiness. 

These notions will be formulated mathematically in $2, and already the pre- 
liminary analysis of p 3 will show that 6-1 cannot be the only relevant horizontal 
scale. This is not quite unexpected. The conjecture that the mechanism of weak 
bores is dispersive has come to be generally accepted, due largely to the influence 
of Brooke Benjamin, and is strongly supported by Morton’s (1962) and Pere- 
grine’s (1966) computations. It follows that the wave must be anticipated to 
assume a clear-cut form only asymptotically, as t +GO, and that the asymptotic 
description must be anticipated to be thoroughly non-uniform with respect to 
the horizontal co-ordinate, because roughly speaking, it should depend on the 
value of x / t .  The following is concerned primarily with the head of the wave, and 
6-1 is therefore to be understood as the smallest horizontal scale which is relevant 
there. It need not, and indeed turns out not to, be a wave-length. 

The non-uniformity with respect to x precludes, in most of the present analysis, 
the use of the boundary condition specifying the final surface level achieved a t  
the tail of the transition wave. It appears plausible, however, that the assumed 
near-steadiness of the head of the wave presupposes a similar near-steadiness of 
the final level, and for simplicity, wherever reference can be made to the tail 
boundary condition, it will be assumed to specify a surface level independent of 
time and exceeding the initial level H by an amount O(eH).  

Although the two-parameter family of limit processes represents a net cast 
very wide, it turns out to drag up only one asymptotic transition wave which 
(i) can raise the water level, (ii) has unsteadiness small compared with the hori- 
zontal variations at the head of the wave, and (iii) can be consistent with the 
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equations of fluid motion. As expected, it will be found in $ 4  that the wave can 
be of Airy’s type (‘shallow-water ’ wave) for at most a brief period, if it  raises the 
water level. It is shown in $5 that it cannot remain indefinitely of Jeffreys’ type 
either (linear long wave with dispersion), however small the amplitude, because 
that type of transition wave spreads too fast. Ultimately, it  must take the form 
of a wave-train, governed by a near-steady variant of the equation of Korteweg 
& de Vries (1895), in which each individual wave approaches a cnoidal wave 
characterized by a parameter F varying but slight’ly from one wave to the next 
($6) .  The very first wave must approach the form of a solitary wave, and the 
separation of the first crests must grow large, at least like the logarithm of the 
ratio of the -$-power of the amplitude scale to the time scale. 

These results show, incidentally, that the only possible near-steady transition 
wave starts with a wave-train of the kind envisaged by Whitham (1965), and the 
need for averaging over many waves follows directly from the result ($6) that 
appreciable changes in the cnoidal parameter F can occur only over such dis- 
tances. However, the following shows that only one parameter is involved, not 
three, and our analysis yields automatically the equation (32), governing the 
growth of F ,  which must replace the approximation conjectures of Whitham 
( 1965). That equation shows the unsteadiness of the transition-however small 
it may have become-to retain a substantial influence on the (inviscid) wave- 
train at a large distance from the head of the wave. Moreover, the local approach 
to steadiness is seen not to imply an approach to steadiness for any part of the 
wave-train comprising more than a few crests. In  addition, the present analysis 
gives no indication that even the local approach to steadiness can be maintained 
uniformly throughout the transition wave. The complete wave is likely to be a 
puzzle in several pieces, and this paper only assembles the piece which must be 
laid down first, before others can be fitted in with confidence. 

The results appear in qualitative agreement with what little is known experi- 
mentally. Indeed, they furnish an explanation for the marked difference between 
the wave-forms observed respectively by Favre (1935) and Ippen & Harleman 
(1956). 

2. Formulation 
Let x* denote horizontal distance and y*, vertical distance measured upward 

from the flat, horizontal bed supporting the fluid. For two-dimensional, incom- 
pressible motion, the corresponding velocity components are 

U* = a+*py*, v* = - a  +*‘lax*, (1) 

where +*(x*, y*, t*) is the stream function and t* ,  the time (stars will distinguish 
dimensional quantities). With viscosity neglected, cz wave invading water at  rest 
remains irrotational, so that 

and the equations of motion under the influence of gravity are 
aU*py* = av*lax*, (2) 

(3) 

(4) 

au*lat* + U* au*px* + v* aU*lay* = -p-lap*px*, 
av*pt* +~*av*lax*+v*av+py* = -p-lap*py* -9,  
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where p*, p and g denote respectively the pressure and the constant density and 
gravitational acceleration. The bottom boundary condition may be written 

$*(x*, 0, t*) = 0, 

ah*/at* + a$*(x,* h*(x*, t * ) ,  t*)/ax* = 0, 

p*(x*, h*, t*) = 0, 

( 5 )  

(6) 

(7) 

and the exact boundary conditions at the free surface, y* = h*(x*, t*), are 

if surface tension and interaction between air and water are neglected. These 
equations are invariant to Galilean transformations with y* fixed, and we choose 
an observer travelling in the direction of wave propagation with constant velocity 

U = (gH)*(l -A)-*, 

with respect to the water at  rest (where the surface is at  y* = H ) ,  and require this 
velocity to be just sufficient for him to keep up with the head of the wave. It is 
natural to anticipate that h may depend on E and to assume h E I' ($1) .  

We introduce non-dimensional variables 

x = G(s)x*/H, y = y"/H, t = Sy(e)Ut*/H, 

and a stretching transformation to non-dimensional deviations from the initial 
equilibrium, 

$*(x*, y*, t*) = - uy*  + EUH$(X, y ,  t ;  E ) ,  

p-lp*(x*, y*, t* )  = g(h* - y*) + U2p(x,  y ,  t ;  E ) ,  

it*(%*, t*) = H ~ ( x ,  t ;  E )  = H (  1 + P ( E ) ~ ( x ,  t ;  E ) ) ,  

where also PE I? (8  l), if P-. 0 as E -+ 0. It is convenient to write 

$(x, h(x,  t ) ,  t ;  E )  = h(x,  t ;  a )  U(x, t ;  E ) .  

(YPIE) ar/at + aqlax = 0, 

Equation (6) is then transformed into 

(8) 

where q = u-(Ple)r+PUr 
represents the scaled mass-flow imbalance, by comparison with a steady flow. 
The total head deviation is 

p - l p * + & ( ~ * ~ + v * ~ ) + g ( y * - H ) - + U ~  = sU2m, 

in terms of which (3), (4) may, by (2), be written as 

&*/at* + sU2am/ax* = 0, av*/at* + dJ2am/ay* = 0, 

and these may be expressed in terms of the scaled velocity deviations, u = a$/ay, 

(9) 

(10) 

m = ( l -h ) (p /€ )q -U+r ,  r = €-1p+U-u++E(U2+G2v2). (11) 

v = -a$/ax, by yaulat + amlax = 0, 

S2yav/at + amlay = 0. 

Finally, m is related to the scaled, non-dimensional observables by 
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All these relations are exact; in particular, (8) to (10) express directly the prin- 
ciples of conservation of mass and momentum. 

The limit processes sketched in $ 1  may now be formulated as follows. It will 
be assumed that (1) to (7)  possess solutions for which $, p and q tend, as e+O, 
to functions of class C" with respect to x ,  y, t for 0 6 y < h on any compact set 
in the (x ,  t )  -plane.? Moreover, the solutions are assumed non-trivial in the sense 
that u2+ q2 f 0 and indeed, IuI, 171, (au/at)2 + (aq/at)2 and (au/ax)2 + (aq/ax)2 
do not possess upper bounds tending to zero with e on every compact x ,  t-set; 
this expresses the notion that e and /3 represent the proper amplitude scales, and 
($)-land 6-l, the smallest relevant time and horizontal length scales, at  the head 
of the transition wave. And accordingly, the boundary condition ahead of the 
jump is assumed to be 

~ + o ,  u+o, au/ax+o, a2u/ax2+o as X + + C O  forallt. (12) 

The aim of the analysis will be to identify the functions ~ ( e ) ,  S(e), if any, for which 
these assumptions can survive even cursory scrutiny, and to deduce the corres- 
ponding asymptotic forms of the governing equations (1) to (7). 

3. Long-wave equations 

whence 
The quantity r may now be estimated as follows. By ( 2 ) ,  a2$/ay2 = - S2a2$/ax23 

(13) 1 
1 ~ .  = ys(x, t )  - +~y3a2S/ax2+ 0(64), 
- 

= ~-~s2h2a2S/ax2+0(~4) ,  

u - u = + s 2  (y2 - Qh2) a 2 q a X 2  + o(64). - 

By ( 7 ) ,  on the other hand, 

r(x,h,t)  = Q62h2a221./ax2+8EU2+620(max(62,s)), 

so by (10) and (ll),  

r(x, y,t) = ~S2h2a2U/ax2+~€u2+~20(max (P,s ,y) ) ,  (14) 

which is nearly independent of y, whence the same follows for m. Observe that 
(13), (14) convert (8) and (9) into (approximate) long-wave equations. Indeed, 
the limit process e -+ 0 has been introduced only into the interpretation of u and T 

in terms of Z, which is obtained by vertical averaging of the equations of motion 
and use of the surface and bottom conditions, and the approximation is therefore 
valid on any compact x, t-set on which the limit process is justifiable-even if the 
set is so far from the head of the wave that the least value of 1x1 in the set is not 
bounded. On any such set, therefore, 

(15) m+q = r-(AP/s)q+@q = O(max(62,A/3/e,P)), 

t To avoid confusion, such sets must be kept distinct from others in which x or t grow 
beyond bounds as e -+ 0. On the other hand, since the physical problem does not specify 
the x, t-origin, compactness can, in the first place, refer only to intervals. For definiteness, 
in the absence of explicit qualifications, compact sets are in the following understood to 
contain the x, t-origin, which is assumed to represent a point within the Erst hump or  
trough (whichever comes first) of the wave at a time when the degree of unsteadiness there 
is already small. 
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if that exists. This approach to long-wave equations, developed from a vertical 
averaging method communicated to the author by Dr Brooke Benjamin, is 
easily seen to be superior to most derivations of long-wave equations in the 
literature. 

Some further properties may be established for the whole family of limits under 
investigation. Suppose lims/P(s) = 0;  then from (8), ay/azl = O(al) where 
z1 = alxt  and a2, = max (y, E ,  e /p)-+O as E + O .  But by (12), y+O while still 
zl-+O, so that y = O(al) for all bounded zl, contrary to the hypothesis that l y ]  
has no bound tending to zero with E ,  and hence p /e  must be bounded. Again, 
suppose lims/(ph) exists, then from (8), (9), (11), 8y/8zz = O(a2),  where z2 = a,x 
and a: = (s/ph) max (y ,  S2, E ,  p) -+ 0 as E -+ 0, whence again, by (12), y = O(a,) for 
bounded z2, contrary to hypothesis, and therefore A ~ / E - +  0 and 

a = max(/3,S2,e,hp/e)-+0 as s+O. 

From (8), (9) and ( l l ) ,  with z = yx, 

a (g-;) (m-q) = at - [ I T  2 + U-G-i&?y(Z-A/E)] = O(a),  

so that m - q = O(a), for bounded z, because m -+ 0, q -+ 0 as x -+ + co for all t ,  by 
(11) and (12). By (15), therefore 

with bounded M ,  Q. But 
m = aM, q = a&, 

M - Q = M +  Q - 2a-'(U- (P/s)q +/3Gy), 

whence Z - p y / ~  = O(a), and since an upper bound on ]GI tending to zero with E 

is excluded by hypothesis, e /p  must also be bounded. Thus /3 and E belong to the 
same equivalence class in r,S and since only homogeneous boundary conditions 
have been formulated, no generality is lost by identifying them, whence 

p = E ,  E - y  = O(a), a = max (S2, E ,  A).  (16) 

But thenfrom (8), (9)and(ll),hay/8x = O(max(y,S2,e)),andsinceanarbitrarily 
small upper bound on 171 is contrary to hypothesis, (12) implies that 

is bounded as E -+ 0. 
h/max (7, a2, 4 

For later reference, we note that (8), (9) and (11) imply 

(17) 
l a  - i a  (; ;-$J (y - U) = 27 - - ax (T - h y  - €27) -- 2 - at (u - u), 

if a/r is bounded, whence from (8), 

t a/& and a/&, denote differentiation at fixed t, since z and z i ( i  = 1, 2, ...) are only 

$ The equivalence class of O(e) E I? is defined as { K ( E ) (  both lim K / e  and lim O/K exist}. 
scaled forms of z. 
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To proceed further, it  appears necessary to consider sub-families of our collec- 
tion of limits. The largest values of y for which E ,  6 and y all tend to zero are 
characterized by 

E/Y+O, S2/y+0 as E + O .  

Then a/y is bounded, and the right-hand side of (17) remains bounded even after 
differentiation with respect to t. But by (12), i3(q-U)/at+O as x+ +a while 
z = y x - f  0,  so that a(? - @ / a t  = O(y) for bounded x. The right-hand side of (18) 
then tends to zero with E ,  and there are only two possibilities. If y /h  is bounded, 
y and h belong to the same equivalence class in I?, so that no generality is lost 
in taking h = y, and then from (18), the least upper bound of 171, or briefly 
lub [ 71 --f 0, as E+ 0, contrary to hypothesis; the observer travels too fast and 
leaves the head of the wave behind. If h/y+O,on the other hand, (18) implies 
lub lar/atl+ 0, and since a(7 - U ) / a t  = O(y), also lub laU/atl +0 ,  which contradicts 
the definition of y ;  the observer cannot, consistently with the governing equations, 
expect to observe time-rates of change large enough to correspond to (19). 

(19) 

4. Airy waves 
Consider next the subfamily of limits for which 

P / e + O  as E + O .  (20) 

Since e/y+O now implies (19), it may be excluded from further consideration, 
and no generality is lost in taking A/E to be bounded and 01 = E. Then since 

M +  & = 3 3 -  (A /€ )  U+ 0 (max ( E ,  J2/e)) ,  u. - 7 = O(E), 

and from (8), (9), 
a(M + &)/ax = - (y/.e) a(7 +,u)/at. 

There are two possible cases. 
(i) If a: = y/s+O as e+O and 2, = ap, then a(M + & ) / a x ,  = O(a,), and since 

(12) implies M + &+ 0 and U+ 0 as x - +  + co but 2,-3 0, it follows that lub ]GI + 0 
as E - +  0, for bounded z4, contrary to hypothesis. 

(ii) If y = E ,  (17) is valid and its right-hand side remains bounded even after 
differentiation with respect to t or x. Since a(7 - Z)/at + 0 and a(7 - ?i)]az+ 0 as 
x --f + co but x6 = O(e)x+ 0, it follows that, if y/O+ 0, both these derivatives are 
O(y/B) for bounded z5 and hence 

a(M + &)/ax = (3G - A / € )  %/ax + 0 (max (62/~ ,  y/@) 
= -2aii/at+O(max (a2,?/@)). 

In  the limit, therefore, 

diildt = 0 when dx/dt = ( 3 E - h / ~ ) / 2 ,  (21) 

and if our observer is to keep pace precisely with the head of the wave, where 
arbitrarily small values of Ti occur, his appropriate velocity is given by h = 0, i.e. 
U2 = gH. Moreover, if a secondary observer travels in the direction of x* increas- 
ing with a velocity exceeding the local fluid velocity a t  his position by the local 
value of (gh*)&, then the primary observer sees him moving with velocity 

dx/dt = Y - ~ [ E Z  + (1 - A)*( I + E ~ ) B  - 11, (22) 
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which takes the value specified in (21), in the case under consideration. NOW, 
(3U - A / € )  is an increasing function of U and hence, if at  some fixed t, U fails to be 
a monotone non-decreasing function of x for all bounded 2,-not to mention all 
bounded x-then a solution in the assumed class ceases to exist after a Jinite 
interval oft. The condition (20) is therefore consistent with the governing equa- 
tions only if, at a sufficiently early, fixed time, U and are monotone non-decreas- 
ing functions of x for all bounded z,, and (21) then indicates that the same pro- 
perty is maintained for all later t. 

Such waves which lower the surface level as they propagate into water at rest 
have long been known, and are relevant to the present investigation only to the 
extent that a wave ultimately raising the level might start with a phase lowering 
it temporarily. For this to remain consistent with the governing equations, no 
local raise of level interrupting the monotone property can occur at  bounded t 
within bounded 2,-distance from the head of the wave. But then (21) shows the 
depressive part of the wave to spread so that lar/atl and lar/alcl decrease as t 
increases, and any phase of the wave raising the level would not only have to lag 
far behind, but would also have to travel into water which, over any bounded 
x-interval, is ultimately in uniform motion. Such waves have been excluded ( 0  1)  
by the assumption on which the neglect of viscous effects is based. 

5. Jeffreys waves 
For the subfamily of limits for which 

e /S2+0 as E+O, 

the case S2/y-+ 0 has already been dismissed in $3, and no generality is therefore 
lost in taking A/S2 to be bounded and a = S2. Then 

M + Q = 3 a2U/ax2 - 6-2AU + O(max ( A ,  e / P ) ) ,  

a(M + &)/ax = - Y a(r + u)/at. 

(i) If a: = y/P-+O as E+O, then since M+Q-+O as x+ +co, 

3 a2U/8x2 - S-2Aii = O(max (A ,  ~ / 6 ~ ,  as) 

for bounded z6 = a6x, and U-+ 0 as x -+ + co. Thus if A/S2 -+ 0, we may again deduce 
from (12) that lub lU] + O  with E ,  contrary to hypothesis. But if A = 62, then 
U exp ( + 243)  = const. and S does not remain bounded as x+ - 00. Therefore, E 

cannot be the proper amplitude scale of the bore, if the transition is monotone, 
or of the ikst crest, if it  is not monotone. The result may, however, represent the 
outer skirt of a wave, at its front, and is indeed the first asymptotic approximation 
to (30) as x+ +oo. 

(ii) If y = 82, we may again appeal to (17), and an argument analogous to that 
of $ 4  shows that 

2aujat - S-2Aau/ax+ g a3u/ax3 = O(max (y/O, S2, E/P)) 

for bounded z5 = B(E)x ,  if y/O+ 0. The appropriate speed for an observer not out- 
pacing the head of the wave corresponds to A/S2-+ 0, since even the longest 
waves of such small amplitude are found to propagate with a velocity differing 
ultimately by o(S2) from (gH)s.  
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The limiting equation, 
6 aqat + a3u/ax3 = 0, 

was studied (implicitly) by Jefieys (1946), and integration of his result yields the 
basic solution (Gardner & Morikawa 1960 and Benjamin & Barnard 1964) 

Ai (7) dr ,  c = (2/t)f z, (25) 

of (24), representing a wave of transition from the surface level H to the level 
H (  1 + ec); Ai here denotes the Airy function (Jeffreys & Jeffreys 1946). This is a 
case, then, in which the tail boundary condition can be directly relevant to an 
analysis of the motion a t  distance O(d-lH) from the head of the wave, and it will 
be assumed to be 

r(x,t)-+rf = const. > 0 as x - f  -co for all t .  

Since (24), (12) and this boundary condition are invariant under the transforma- 
tion x = a", t = UT, U(x, t )  = w([, 7) for arbitrary constant a, the solution U ( x ,  t )  
for the initial condition u(x, 0) may be obtained by this transformation from the 
solution w(g, 7)for the initial condition w([, 0) = 5(&, 0). As a-l-+O, w([, 0) tends 
to the step function q fH(  - [), and that is the initial condition satisfied by (25) if 
c = qr. Any transition wave governed by (24) may therefore be anticipated to 
approximate (25) for large t. 

It is important to note, however, that (24) can describe only a transitory stage 
in the development of a transition wave, not a true asymptotic development 
(Ursell 1953). In  the case (ii) under discussion, the time scale, (yd)-l, equals the 
cube of the horizontal length scale, 8-l, and thus (23) requires the time scale to 
be small compared with e-8, where 8 is the amplitude scale. Since 5 and 7 depend 
only on t-%x, at least asymptotically, the wave preserves the relation y = c!j2, but 
I Z / a t  I and I aii/axl decrease as t increases, while the amplitude-represented by 
U( - 00, t )  = qfis preserved, so that (23) must ultimately give way to y = d2 = 8. 

(The same conclusion actually follows for any transition wave once character- 
ized by (23) and of fixed amplitude and increasing time scales, from the earlier 
result that the alternative developments, e/d2 + 0 with y/d2 + 0 or 62/y -+ 0, do 
not admit transition waves.) 

This conclusion is of disturbing relevance to the classical theory of small- 
amplitude dispersive waves, the literature on which is predominantly concerned 
with asymptotic solutions as t -f co. That theory therefore considers the double 
limit e -+ 0, t + co, in this order, whereas the reverse order is the physically relevant 
one. Our results show the order of the limits to be definitely non-interchangeable 
for transition waves on water; for sufficiently small amplitude, the effects of 
dispersion may be dominant for a long time, but ultimately, the cumulative 
effect of the small non-linearity must become important. It is natural that this 
may have a striking effect on transition waves, for which the amplitude scale does 
not change with time. Ursell (1953) has pointed out that it is relevant also to 
some aspects of waves the amplitude of which decays in time. 

The results of this section may also help to explain the apparent discrepancy 
between the experimental results of Favre (1935) and of Ippen & Harleman 
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(1956). The latter studied an oblique hydraulic jump, steady with respect to a 
stationary observer, on a running stream and found a wave form qualitatively 
resembling (25). For such an experiment, distance along the wave front corres- 
ponds to our t ,  and that distance is limited by the width of the channel. Favre’s 
experiment, on the other hand, concerns a bore travelling into water at rest in a 
very long channel. His findings bear little resemblance to (25), but appear in 
qualitative agreement with the results of the next section. 

6. K-V waves 
There remains only the subfamily of limits for which 

e = 6 2 ,  (26) 
and since the case e/y -+ 0 has been dismissed in § 3, we may take Ale to be bounded, 
and a = 8. Thus 

M + Q = g a 2 q a X 2  + g i i 2  - h;il/e + o(E), 

a(M + &)/ax = - (y/e) a(7 + u)/at. (27) 

(i) If also y = e, (17) is valid and an argument analogous to that of $4 leads to 

-+-- - - + + Z Z - - ~  = o(e/e), 
at 2ax a raza 3ax2 8 -1 

the equation of Korteweg & de Vries (1895), for bounded x5 = Ox, if e/O(e) -+ 0 as 
e --f 0. Apart from waves of uniform translation the only known, exact solution 
(Gardner & Morikawa 1960) has amplitude decreasing indefinitely with time. A 
numerical treatment by Morton (1962) was successful, except in the case here 
studied. The recent study by Peregrine (1966) traces the development of an Airy 
wave ($4) through one of Jeffrey’s type ($5) to one beginning to resemble case 
(ii) below at the time a t  which the computation was broken off. 

(ii) If Y/e-+O, so that the time scale is large compared even with €4, then 
M + Q = U(K)  for bounded z7 = ex, if BK = r / e  and O(e) -+ 0, ~ ( e )  + O ,  as e-+ 0. 
Thus 

which is Boussinesq’s equation of solitary-wave theory. By (12), the only possible 
waves approaching steadiness so cIosely that y/s-+O as e+O, must therefore 

g a2u/ax2 + $2- hU/e = O(max (8, K ) ) ,  (29) 

approach solitary waves 
U(x)  = ksech2((3k)3x/2), 

of amplitude parameter k = A/€, 

for x bounded below. But this conclusion does not follow for large negative x, and 
indeed-except for large positive x at the front of the wave-any interpretation 
of it must take account of the delicacy of (29) stressed by Benjamin & Lighthill 
(1954). 

We recall therefore that (29) really stands, by (14), (16), (26), and (27) for the 
near-steady form g a=u/ax2 + +ii2  - ICE = P, 

P = M + Q + (k - - ~ ) ( q  - 5) + +a2qax2+ #ii2-r/e, 
(31) 

a 
ax e at ax 
_-  a p  - --- y a (7 +u) + ( k - U )  - (7 - U )  + O(€) ,  
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of the equation of Korteweg & de Vries. From (30), existence of a non-trivial 
asymptotic solution corresponding to y/s-+O requires k > 0. By (12), integration 
of (31) with respect to x gives 

( a u p q  = U.2 - u3 + 2fu - 2y = c ~ u ) ,  (33) 

where 

and (32) shows C,(zc) to be a cubic in u with coefficients that tend asymptotically 
to constants over any finite interval of x. The criterion for two distinct real roots 
is 

and the curve A = 0 in the (f, y)-plane is shown in figure 1 (which is of course 
related to the diagram of Benjamin & Lighthill (1954)). By (12), the front of the 

u = Z / k ,  x' = x(3k)B, f = P/k2, y = -Jz; f udx, 
ax 

(34) A = (1+9f -Z7~~)~- (1+6f )~  6 0, 

t 27y 

FIGURE 1 

wave is represented by the origin of the (f, y)-plane, which corresponds to the 
solution (30)of (33).As x decreases, the representative point (f, y) must be antici- 
pated to shift slightly from the origin, according to (32). If it moves into the 
region A < 0, then (33) is the equation of a cnoidal wave 

u = p + (1 + v - p )  cn2((8x(l+ v- cr)*), (35) 

of modulus (1 + v-p)g/(l+ v- G-)$, where 1 + v, p and c denote the roots of the 
cubic Cz(u), in decreasing order. If e is sufficiently small, thenfand y (and hence 
also v, p and G-) are of arbitrarily small magnitude, and the wave length 

p-G- 2 
L N N log[(y+v2/8)/32] 

is large, and (35) approaches (30). 
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On the other hand, if the representative point moves into the region A > 0, the 
solution of (33) and (12) fails to be bounded for all bounded x and hence, no solu- 
tion of the governing equations consistent with y/e+ 0 exists. Conversely, since 
A(f, y) = 0 implies 3 dy/df = 1 - (1 + 6f )i and d2y/df = - (1 + 6f)-&, while 
ay/i?x = uaflax and u+O as x+ +m, the path of the representative point is 
tangent to the curve A = 0 a t  the origin, and a necessary condition for a solution 
consistent with Y / E  + 0 is therefore that 1 + k(aE/i?x)/(aB’/i?x) have a non-negative 
lower bound as x+ +a. 

In  conclusion, the investigation has contributed to a clarification of the issues 
by qualitative identification of the front part of the only asymptotically steady 
jump possibly obtained from our two-parameter family of single limits. Since the 
results appear compatible with the experimental evidence so far available, the 
next task would appear to be a study of (32), and until this reaches a stage where 
direct use can be made of the tail boundary condition, the amplitude k may re- 
main undetermined. The traditional value is k = 3 ~ ~ / 2  (Rayleigh 1914). 

The author is indebted to Dr Brooke Benjamin for long and decisive dis- 
cussions, and to Prof. M. c. Shen for co-operation during the early stages of the 
investigation. The work was supported by the Office of Naval Research under 
Contracts Nonr-562(34) and -1202(27). 
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